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INTRODUCTION

�What is Compression?

{ It is a process of deriving more e�cient (i.e., smaller)
representations of data

� Goal of Compression

{ Signi�cant reduction in the data size to reduce the
storage/bandwidth requirements

� Constraints on Compression

{ Perfect or near-perfect reconstruction (lossless/lossy)

� Strategies for Compression

{ Reducing redundancies

{ Exploiting the characteristics of human vision
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NEED/MOTIVATION FOR COMPRESSION

� Massive Amounts of Data Involved in Storage/Transmission
of Text, Sound, Images, and Videos in Many Applications

� Applications

{ Medical imaging

{ Teleradiology

{ Space/Satellite imaging

{ Multimedia

{ Video on demand

� Concrete Figures

{ A typical hospital generates close to 1 terabits per year

{ NASA's EOS will generate 1 terabytes per day

{ One 2-hour video = 1.3 terabits

{ Video transmission speed = 180Mb/sec

{With MPEG1 (1.5Mb/s), need compression ratio of 120

{With MPEG2 (4-10Mb/s), need comp. ratio of 18-45
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BASIC DEFINITIONS

� Lossless Compression: 100% accurate reconstruction of the
original data

� Lossy Compression: The reconstruction involves errors which
may or may not be tolerable

� Bit Rate: Average number of bits per original data element
after compression

� Compression Ratio: Original Data Size
Compressed Data Size

� Coding: Compression

� Codeword: A binary string representing either the whole
coded data or one coded data symbol
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STRATEGIES FOR COMPRESSION
(Redundancy Reduction)

� Symbol-Level Representation Redundancy

{ Di�erent symbols occur with di�erent frequencies

{ Variable-length codes vs. �xed-length codes

{ Frequent symbols are better coded with short codes

{ Infrequent symbols are coded with long codes

{ Example Techniques: Hu�man Coding

� Block-Level Representation Redundancy

{ Di�erent blocks of data occur with varying frequencies

{ Better then to code blocks than individual symbols

{ The block size can be �xed or variable

{ The block-code size can be �xed or variable

{ Frequent blocks are better coded with short codes

{ Example techniques: Block-oriented Hu�man, Run-Length
Encoding (RLE), Arithmetic Coding, Lempil-Ziv (LZ)
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REDUNDANCY REDUCTION (Cont.)

� Inter-Pixel Spatial Redundancy

{ Neighboring pixels tend to have similar values

{ Neighboring pixels tend to exhibit high correlations

{ Techniques: Decorrelation and/or processing in the fre-
quency domain

{ Spatial decorrelation converts correlations into symbol- or
block-redundancy

{ Frequency domain processing addresses visual redundancy
(see the next slide)

� Inter-Pixel Temporal Redundancy (in Video)

{ Often, the majority of corresponding pixels in successive
video-frames are identical over long spans of frames

{ Due to motion, blocks of pixels change in position but not
in values between successive frames

{ Thus, block-oriented motion-compensated redundancy re-
duction techniques are used for video compression
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REDUNDANCY REDUCTION (Cont.)

� Visual Redundancy

{ The human visual system (HVS) has certain limitations
that make many image contents invisible. Those contents,
termed visually redundant, are the target of removal in
lossy compression.

{ In fact, the HVS can see within a small range of spatial
frequencies: 1{60 cycles/arc-degree

{ Approach for reducing visual redundancy in lossy com-
pression

1. Transform: Convert the data to the frequency domain

2. Quantize: Under-represent the high frequencies

3. Losslessly compress the quantized data
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INFORMATION THEORY PRELIMINARIES

� Discrete Memoryless Source S: A data generator where the
alphabet fakg is �nite and the symbols generated are inde-
pendent of one another.

� Entropy: H(S)=-Pk pk log pk, where pk =Prob[ak]

� H(S) is the minimum average number of bits/symbol possible

� Sources with Memory: Presence of inter-symbol correlation

� Their entropy is still the min average number of bit/symbol

� Adjoint Source of Order N

{ Treat each possible block A of N symbols as a macrosym-
bol, and compute the probability PA

{ Treat the source as a memoryless source consisting of the
macrosymbols A's and their probabilities PA's

{ The entropy HN = � P
A PA logPA

� Theorem (Shannon): For any source S with memory,
HN (S)
N

�! H(S) as N �!1
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HUFFMAN CODING

� Each (macro)symbol A has a probability PA

� Form a Hu�man tree as follows:

1. Create a node for each symbol

2. While (there are two or more uncombined nodes) do

{ select 2 uncombined nodes a & b of minimum proba-
bilities

{ Combine a& b by creating a new node c of prob Pa+Pb,
and making a & b children of c

3. Label the tree edges: left edges with 0, right edges with 1

4. The code of each symbol is the binary sequence labeling
the path from the root down to the corresponding leaf
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HUFFMAN CODING (Cont.)

� Example: Alphabet=fA;B;C;D;E; F;G;Hg of probabili-
ties 1=2; 1=4; 1=16; 1=16; 1=32; 1=32; 1=32; 1=32
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HUFFMAN CODING (Cont.)

� Coding a Sequence/File

{ Represent each symbol in the sequence by its Hu�man
code

{ Example: ABBAACA is coded as 101011100101

� Decoding

{ Proceed from the next undecoded bit, and walk down the
tree (starting from the root) going left or right depending
on whether the bit is 0 or 1

{When a leaf is reached, replace the binary string just
scanned by the symbol corresponding to the leaf

{ Example:
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RUN-LENGTH ENCODING

� Represent each subsequence of identical symbols by a pair
(L; a) where L is the length of the subsequence, and a is the
recurring symbol in the subsequence

� Example: aaabbbbaaaa is coded as (3; a) (4; b) (4; a)

� If the sequence is binary, there is no need to represent a
because the value of a alternates between 0 and 1

� Example: 00011111000011 is coded as 3; 5; 4; 2

� RLE can be followed by Ho�man coding to further code the
L's and a's

� The fax standard uses RLE
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ARITHMETIC CODING

� Arithmetic Coding achieves a bit rate equal to the entropy

� It codes the whole input sequence, rather than individual
symbols, into one codeword

� The Conceptual Main Idea

{ For each binary input sequence of n bits, divide the unit
interval into 2n intervals, where the length of i-th interval
Ii is the probability of the i-th n-bit binary sequence

{ Code the i-th binary sequence by l1l2:::lt where 0:l1l2:::lt:::
is the binary representation of the left end of interval Ii,
and t = d� log(Prob(i-th sequence))e
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ARITHMETIC CODING

� Method

1. Let a1a2:::an be the input to be coded

2. Let I = [L;R) be the interval corresponding to the sub-
sequence scanned so far

3. Initially, I = [0; 1);

4. for i = 1 to n do

{ Let Pi = Prob[0=a1a2:::ai�1], and � = R� L

{ Divide I into 2 intervals: [L;L+Pi�) and [L+Pi�; R)

{ If ai = 0, reduce I to [L;L + Pi�)

{ Else, reduce I to [L = L + Pi�; R)

5. t = d� log(R� L)e

6. Express L in binary L = 0:l1l2:::

7. Code the input with l1l2:::lt

� Patent: IBM Q-Coder
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ARITHMETIC CODING (Cont.)

� Example: Binary Markov Source P [0=0] = P [1=1] = 3=4;
P [0=1] = P [1=0] = 1=4 and P [0] = P [1] = 1=2
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LEMPIL-ZIV COMPRESSION

� LZ encodes recurring patterns (blocks) using the positions of
their �rst occurrences

� LZ Encoder

1. Let x1x2:::xn be the input to be coded

2. Maintain a dictionary (DICT) of patterns seen so far

3. DICT[1]=x1, and put x1 in the output code

4. While (there are still input symbols) do

{ Read from the remaining input until the string scanned
is no longer in DICT. Call that string Wa, where W
is in DICT and a in the input symbol after W

{ Let j be the index where W=DICT[j]; (j < i)

{ Let j be the dlog ie-bit binary representation of j

{ CodeWa as (j; a) and append that code to the output

{ DICT[i] = Wa and i = i + 1

� Remark: The dictionary is not stored/transmitted.

� The LZ bitrate is asymptotically optimal without the need
to know or compute the underlying probability model of the
input data.
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LEMPEL-ZIV (Cont.)

� Example: x = 0010100100010010100110101
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LEMPEL-ZIV (Cont.)

� LZ Decoder

1. Let y = y1y2::: be the codeword to be decoded back to x

2. x = y1 and DICT[1] = y1

3. i = 2

4. While (the codeword is not fully scanned) do

{ j = the next dlog ie bits from y

{ W=DICT[j]

{ a= the next symbol from y

{ append Wa to the right of x

{ DICT[i] = Wa

{ i = i + 1
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LEMPEL-ZIV (Cont.)

� Example: Decoding y = 011100110100110110111 from the
previous example

i dlog ie j = j W a DICT[i] x = (previous(x))(Wa)

1 0 � = � � 0 0 0

2 1 (1)2=1 0 1 01 001

3 2 (10)2 = 2 01 0 010 001010

4 2 (11)2 = 3 010 0 0100 0010100100

5 3 (100)2 = 4 0100 1 01001 001010010001001

6 3 (101)2 = 5 01001 1 010011 001010010001001010011

7 3 (011)2 = 3 010 1 0101 0010100100010010100110101

� Below, the underbraced strings in y are the binary represen-
tations of the various values of j

� Right under each underbraced j value, the corresponding
DICT[j] is put in x. The non-underbraced bits of y are
\dropped" into the appropriate positions in x.

y = 0|{z} 1|{z} 1 10|{z} 0 11|{z} 0 100| {z } 1 101| {z } 1 011| {z } 1
x = 0 0 1 01 0 010 0 0100 1 010011 010 1
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DPCM

� DPCM is a predictive technique that capitalizes on inter-
pixel spatial redundancy

� DPCM predicts the next pixel based on the values of the
previous neighboring pixels

� It then computes the residual pixel (actual � predicted)

� Finally, it losslessly compresses the residual data, using RLE,
Hu�man, etc.

� DPCM decorrelates the data and causes the residual to have
lower (memoryless) entropy

� DPCM is the lossless JPEG standard
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PROS/CONS OF THE LOSSLESS TECHNIQUES

Advantages Disadvantages

Hu�man
� Easy to implement

� Good bitrate
� Ignores correlations

Blocked-

Hu�man

� Exploits correlations

� Near-optimal bitrate

� Block probabilities are

costly to compute

Arithmetic

Coding
� Optimal bitrate

� Precision problems as in-

tervals become very small

� Needs the conditional

probability model

RLE
� Easy to implement

� Good bitrate

� Not generally applicable

as a standalone

LZ

� Optimal bitrate

� Does not need the proba-

bility model of the data

� Requires long input

sequences to pay o�

DPCM
� Easy to implement

� Good bitrate

� Limited to inter-pixel

redundancy

Other

predictive

coders

� Good bitrate � Slower than DPCM

Bit-Plane

Coding
� Good bitrate � Slower than DPCM
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LIMITATIONS OF LOSSLESS COMPRESSION

� Low compression ratios (about 2 to 1)

� No lossless compression technique can compress every possi-
ble input by at least one bit
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